KOMBINAT "PONAR-PLASO"

BRZESKA FABRYKA OBRABIAREK BRZEG n/ODRA

 ul. Cmentarnal
NOŻYCE GILOTYNOWE NG-3B

Nr fabryczny	859
Rok budowy	1974
Rodzaj napięci	i sterowania $580 / 220$
Czesstotliwóś	50.12

GŁÓWNY KONSTRUKTOR N侖

KIEROWNIK DKT
KIEROWN :
Dzialu Konirof jaketed
w/人
ink. Whadystaw Serelyszyn

Celem dokumentacj1 techniczno-ruchowej jest dostarczenie odbiom cy potrzebnych informacji umożliwiających racjonalne wykorzystanie nożyc oraz poszczególnych urządzeń przez okres ich eksploatacji bez koniecznosci odwoxywania się do dostawcy. Przez włá́ciwą konserwację i eksploatację nożyc oraz prawidłowe typowanie operacji technologicznych zapewnia się czpieczną pracę, znaczne obniżenie kosztow eksploatacji oraz kosztow remontów maszyny. Dokumentacja techniczno-ruchowa zawiera romież informacje dotyczące sposobu przeprowadzania regulacji wazniejszych mechanizmów nożyc oraz ich naprawy.

Dokładne zapoznanie się z DTR oraz ścisłe przestrzeganie zawartych w niej informacji uchroni użytkownika przed uszkodzeniem maszyny i nieprzewidzianymi kosztami.

W zakładzie użytkującym nożyce NG3B z dokumentacją technicznoruchową powinni zapoznać się:

1. Główny Mechanik
2. GI6wny Technolog
3. Brygadzista Wydziału
4. Ustawiacz Wydziału
5. Obsługujący nożyce i konserwator

U w a g a: Ponieważ nożyce NG3B moga bye modermizowane wskutek wprowadzanych ciaggłych udoskonalen technicznych, dokumentacja techniczno-ruchowa jest przez producenta systematycznie aktualizowana 1 odpowiada tylko temu egzemplarzowi nożyc, do których jest dołączona przy wysyłce zgodnie z numerem fabrycznym maszyny. W zaleźnó́ci od zamówienia nózyce moga być dostar czone z wyposaźeniem elektrycznym normalnym 5.0.0E1 lub z wyposażeniem elektrycznym specjalnym 5.0.0E umożliwiaj̨cym nastawienie zderzaka z pulpitu sterowniczego.

SPIS RZECZY

1. CHARAKTERYSTYKA TECHNICZNA
. CHARAKIERISIHA TECHNCZNA 5
1.1. Opis techniczny 5
1.2. Wielkości charakterystyczne 8
1.3. Wyposazenie normalne 9
1.4. Wyposażenie specjalne 11
2. CHARAKTERYSTYKA TECHNOLOGICZNA
13
13
2.1. Dobór operacji
2.1. Dobór operacji 13
3. INSTRUKCJA PRZYGOTOWANIA DO URUCHOMIENIA 13
3.1. Rozpakowanie i transport wewnątrz zakładu 13
3.2. Fundament 14
3.3. Odkonserwowanie 14
3.4. Ustawienie /montaz/ 15
3.5. Przyłączenie do sieci zasilającej 15
3.6. Wstępne uruchomienie 16
4. INSTRUKCJA BEZPIECZENSTWA I HIGIENY PRACY 17
4.1. Wymagania ogolne 17
4.2. Wymagania szczegółowe 17
4.3. Urządzenia ochronne i zabezpieczające 19
5. INSTRUKCJA OBSEUGI 19
5.1. Rozmieszczenie aparatury steromiczej 19
5.2. Sterowanie silnika 20
5.3. Rodzaje muchu nożyc 21
5.4. Nastawianie rodzaju ruchu 21
5.5. Zatrzymanie awaryjne 23
5.6. Nastawianie szczeliny między nożami 23
5.7. Nastawianie zderzaka. 24
6. INSTRUKCJA SMAROWANIA 24
6.1. Instrukcja obsługi instalacji smarowania 24
6.2. Wykaz olejów i smarów 26

Strona

7. INSTRUKCJA REMONTOWA 27
7.1. Ewidencja czasu pracy 27
7.2. Cykl przeglądów 1 remontów 27
7.3. Regulacje 32
7.4. Montaź i demontaz 39
7.5. Docieranie po remoncie 41
7.6. Odbiór techniczny po remoncie 41
8. MATERIAモY UZUPEENIAJACE 42
8.1. Zalecenia bezpieczeństwa pracy
8.2. Karta sprawdzania
8.3. Katalog czésci zamiennych
8.4. Wykaz symboli na tabliczkach informacyjnych8.5. Wyposażenie elektryczne/zaisęcznik/
8.6. Instrukcja praski smamej /zataceznik/
SPIS RYSUNKOW
9. Rysunek ofertowy
10. Transport nożyc
11. Fundament
12. Elementy sterowania
13. Regulacja szczeliny cięcia
14. Plan smarowania
15. Regulacja naciągu pasów
16. Prowadzenie belki noźowej
17. Bezpiecznik
18. Urządzenie do cięcia wg rysy
19. Zderzak mechaniczny
20. Reduktor
21. Hamulec
22. Widok ogólny nożyc NG3B
23. Segment noźa
24. Listwa
25. Wykładzina cierna
26. Schemat obwodowy
27. Schemat montażowy
28. CHARAKTERYSTYKA TECHNICZNA
1.1. Opis techniczny
1.1.1. Zastosowanie

Nożyce gilotynowe NG3B zaliczane są do grupy maszyn pomocniczych w obróbce plastycznej metali. Słuz̨̨ do cięcia blachy o grubości do 3 mm przy wytrzymałosci ciętej blachy do $R_{m}=50 \mathrm{kG} / \mathrm{mm}^{2}$. Na nożycach tych można cią́ blachę o szerokości arkusza do 2000 mm . Pasy dłuższe można ciąc tylko do szerokóci $160 \mathrm{~mm} / \mathrm{na}$ tyle pozwala wysięg nożyc/.

Nożyce znajdują zastosowanie w magazynach 1 wydziałach przygotowania produkcji w przemysłach: maszynowym, budowlanym, stoczniowym i motoryzacyjnym.

W celu ułatwienia cięcia blachy o powtarzalnych wymiarach zastosowano urządzenie nastawcze /zderzak/ nastawiane ręcznie, w granicach $0 \div 400 \mathrm{~mm}$.

Poza tym nożyce wyposażone są w urządzenia świetlne óswietlające strefę cięcia i rzucające cień na śad krawędzi tnącej noza, co pozwala ciąć blachę wzdłúd linii prostef wg rysy traserskiej. Nastawna listwa oporowa mocowana na wysiegnikach lub stole umożliwia cięcie pasów blachy wzdłuz linii prostej o rownoległych lub nierownoległych krawędziach ciętej blachy.

Stała listwa oporowa zamocowana na lewym koricu stołu słuzy do cięcia blachy o prostopadłych krawędziach.

Nożyce posiadają wyposażenie specjalne rozszerzające 1 ułatwiające cięcie blachy.

Do wyposażenia specjalnego nożyc należą:
Urządzenie do cięcia blachy pod dowolnym kątem między jef krawędziami /kątomierz/ mocowane na stole nożyc lub listwach wysięgowych. Nastawne klocki oporowe mocowane na wysięgnikach lub stole umożliwiają cięcie pasów blachy wzdłuz linil prostej o równoległych lub nierównoległych krawędziach. Listwa z wkładkę umozliwiająca prostopadłe cięcie wąskich pasów blachy pod zblokowanym dociskaczem.

Urządzenie nastawcze /zderzak/ sterowane ręcznie.
Urządzenie nastawcze /zderzak/ sterowane elektrycznie wraz ze wskaźnikiem połozenia zderzaka i pulpitem sterowania. Urządzenie nastawcze /zderzak/ z wyposazenia specjalnego zarbwno wersja z ręcznym, jak 1 elektrycznym nastawianiem posiada zakres nasta wiania $0 \div 400 \mathrm{~mm} w$ jednym połozeniu ramion zderzaka, a po 1ch wychyleniu do drugiego położenia zakres ten zwiększa się w granicach $400 \div 800 \mathrm{~mm}$.

Oba urządzenia nastawcze z wyposaźenía specjalnego posiadają zwiększoną dokładnosé nastawiania w stosunku do urządzenia nastawczego z wyposazenia normalnego.

Urządzenie nastawcze wyposażenia specjalnego można obskugiwać ze stanowiska pracy /z przodu maszyny/ lub przez ręczne pokręcanie kółka z tyłu maszyny.

> Uwaga: 1/ Przy zastosowaniu urządzenia nastawozego ze wskaźnikiem położenia zderzaka sterowanego elektrycznie /wyposażenie specjalne nożyc/, nie należy pokręcać kółkiem /nastawiania ręcznego/ bez włączonego sterowania nożyc. Grozi to rozregulowaniem wskaźnika położenia zderzaka.

2/ Przy pracy ruchem ciągłym nożyc, zaden z wymienionych zderzakow nie gwarantuje zachowania załozonej dokładności cięcia.

1.1.2. Działanienozyc

Korpus spawany z blach stalowych charakteryzuje się sztywną konstrukcjz.
Napęd przenoszony jest z silnika elektrycznego za pomocą pasow klinowych na koło zamachowe.

W kole zamachowym zabudowane są dwa bezpieczniki spręzynowe przechylne z możliwócią regulacj1 wielkosci przenoszonego momentu w niewielkich granicach.

Bezpieczniki te sq̨ niezniszczalne. W czasie przeciązenia maszyny bezpleczniki przez obrót wysprzęglają koło zamachowe przerywając łancuch kinematyczny napędu na dalsze elementy. Po usunięciu czynnika powodującego przeciązenie nozyc zesprzeqgla się
łancuch kinematyczny przenoszenia ruchu przez obrót bezpiecznikow i ustawienie ich w pozycfi pracy.

Dalef napęd przenoszony jest z koła zamachowego przez przekładnię zębatą na wał główny.

Na jednym końcu wału głównego zamontowane jest sprzęgło z wpustem obrotowym sterowane elektromagnesem.

Ruch obrotowy wału głownego zamieniany jest przez dwa mimórrody i cięgna na ruch posuwisto-zwrotny belki nozowej.

Nożyce z dolnym napędem typu NG3B charakteryzują się lekką konstrukcją 1 odciążonym korpusem.

Nożyce te wyposażone są w indywidualne dociskacze sprężynowe przytrzymujące blachę w czasie cięcia.

Belka nożowa odciążona jest trzema odciążaczami sprężynowymi kasującymi luzy w układzie napędowym i zmniejszającymi dynamiczne uderzenia mas bezwładności w zwrotnych punktach ruchu belki nożowej, co zapewnia łagodną pracę nożyc 1 wydłuża ich żywotność.

Blachy wąskie naleźy ciąć pod dociskaczem zblokowanym /dwa segmenty dociskacza złączone wspólną stopką/ oznaczonym tabliczką na płycie przedniej korpusu przy úsyciu listwy z wkładką /NG3B-13.0/ zapewniającej zachowanie kąta prostego między krawędziami ciętej blachy.

Włączanie ruchu belki nożowej dokonuje się pedałem elektrycznym. Nożyce mogą pracowaé następującymi ruchami belki nożowej:

- ruch pojedynczy belki nożowej uzyskiwany przez nacisnięcie dźwigni pedału elektrycznego. Belka nożowa wykona jeden pełny skok i zatrzyma się W górmym zwrotnym punkcie niezależnie od czasu trwania nacisku na dźwignie pedału elektrycznego;
- ruch ciagły trwały belki noźowej uzyskiwany przez nací́nięcie dźwigni pedału elektrycznego. Belka nożowa będzie wykonywała pełne skoki do chwili naciśnięcia przycisku "sprzęgło stop" zamontowanego w prawym rogu nożyc pod stołem. Po naciśnięciu przycisku "sprzęgaostop" belka nożowa zatrzyma sie w gornym zwrotnym punkcie.

Poza tym w celu nastawiania belki noźowej naleíy przełacznik kluczykowy nastawie na pozycję "nastawianie zderzaka", a w wersji ze zderzakiem ręcznym na "ręczne nastawianie", nacínąc na pedał elektryczny i pokręcając drążkiem koło zamachowe ustawí belkę w zęдanym położeniu.
Poszczególne ruchy belki nozowef nastawiane sę przełącznikiem kluczykowym na tablicy sterowiczej. Wszystkie ruchy sterowania posiadają blokadę elektryczną.
W przypadku cięcia blachy wg rysy traserskiej nalezy włączyc oświetlenie strefy cięcia przełęcznikiem na tablicy sterowniczej.
1.2. Wielkosci charakterystyczne

1	2	3	4	5
11	Urządzenie nastawcze - zakres nastawienia zderzaka: położenie I połozenie II - silnik moc obroty - cięzar	$\begin{aligned} & \operatorname{mn} \\ & m m \\ & k W \\ & \min ^{-1} \\ & k G \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \div 400 \\ 400 \div 800 \\ 0,0,25 \\ 1500 \\ 80 \end{gathered}\right.$	wJposazenie specjalne

1.3. Wyposażenie normalne

Lp.	Wyszczególnienie	Nr rys., normy lub symbol		Uwagi
1	2	3	4	5
1	Dokumentacja technicznoruchowa	NG3B	1	
2	Rozpinacz /do cięcia mg rysy traserskiej)	NG3B-1.109A	2	zamontowany na maszynie
3	Urządzenie nastawcze ręczne	NG3B-12.0	1	zamontowane na maszynie
4	Listwa oporowa	NG3B-1.38	1	zamontowana na. maszynie
5	Drążek $\emptyset 20 \times 500$	NG3B-2.41	1	
6	Zespó pasów klinowych 3A 1250	NG3B-2.74	1 kpl .	zamontowany na maszynie
7	Komplet noży	NG3B-1.43	$\begin{aligned} & 7+1 \\ & \text { segm. } \end{aligned}$	zamontowany na maszynie
8	Sruba fundamentowa A-M16x315 z nakrętką, podkładką i prętem	$\begin{aligned} & \text { 2N-64/MPC- } \\ & 04 / 22014 \end{aligned}$	4	
9	Tłocznica do smaru	RTTSc	1	

1.4. Wyposażenie spec;jalne

Ip.	Wyszczególnienie	Nr rys. normy lub symbol	Przeznaczenie	Ilość sztuk	Uwagi
1	2	3	4	5	6
1	Urządzenie nastawcze /zderzak/ reczne ○ podwyższonej dokładności	NG3B-8.0	Do cięcia blachy na pasy o powtarzalnych wymiarach	1	
2	Urządzenie nastawcze /zderzak/ mechaniczne o podwyíszonej dokładnosci	NG3B-8.0	Do cięcia blachy na pasy o powtarzalnych wymiarach	1	
3	Pulpit sterowniczy ze wskaźnikiem położenia zderzaka	NG3B-9.0	Do zdalnego nastawiania i odczytu połozenia zderzaka		${ }^{*}$
4	Kątomierz	NG3B-1.13	Urządzenie do cięcia blachy pod dowolnym kątem pomiędzy jej krawędziami	1	
5	Listwa z wkładką	NG3B-13.0	Do cięcia wąskich pasów blachy o prostopadłych krawędziach pod dociskaczem zblokowanym	1	

2. CHARAKTERYSTYKA TECHNOLOGICZNA

2.1. Dobor operacji

Nozyce gilotynowe NG3B przeznaczone są do cięcia otwartego blach wzdłuz linii prostej.

Dopuszczalne grubości ciętej blachy w zaleźności od jej wytrzymałości podaje poniższa tabela.

Ip.	Wytrzymazoś ciétej blachy $R_{\mathrm{m}}^{\mathrm{kG} / \mathrm{mm}^{2}}$	Gruboś ciętej blachy w mm	Uwa gi
1	40	3,6	
2	50	3,0	
3	60	2,5	
4	70	2,2	
5	80	2,0	

Blachy o szerokośi ponizej 250 mm należy ciąe w poblizu prawej sciany nożyc pod zblokowanym dociskaczem, nad ktorym przymocowana jest tabliczka informacyjna.

Celem zapewnienia kąta prostego między krawędziami ciętej blachy należy użyé listwy z wkładką /NG3B-13.0/ z wyposażenia specjalnego.
3. INSTRUKCJA PRZYGOTOWANIA DO URUCHOMIENIA

3.1. Rozpakowanie i transport wewnatrz zakładu

Nożyce gilotynowe NG3B dostarczane są odbiorcy w stanie zmontowanym z wyjątkiem wsporników.

Nozyce zapakowane w skrzyni należy przetransportować możliwie jak najblizej miejsca ich ustawienia.

Transport powinien odbywać się w pozycji oznaczonej na skrzyni. Do transportu należy użyć dźwigu o nośności 5 T 。

W przypadku braku urządzen dźwigowych o Wow. nośności należy użyć pochylni 1 wałków stalowych o árednicy co najmniej 50 mm i długosci odpowiadającej transportowanej skrzyni.

Rozpakowane nożyce należy transportować przy pomocy dźwigu i lin zaczepionych w sposób pokazany na rys. 2.

Do transportu poziomego na niewielkie odległó́ci należy maszynę ustawíc na 2 belkach, stanowiących płozy, powiązane ze sobą belkami poprzecznymi.

Maszynę do belek przytwierdzić śrubami przez otwory srub fundamentowych.

3.2. Fundament

Wykonanie fundamentu i ustawienie nożyc należy do nabywcy. Fundament pykonać nalé̇y zgodnie z wymiarami podanymi na rysunku 3.

W przypadku demontaźu wału głównego nożyc na stanowisku pracy, należy przewidzieć takie ustawienie nożyc by była możliwośc wyciągnięcia wału w lewą stronę patrząc na maszynę od strony stołu. Przestrzeń ta winna byé równa długości nożyc.

Rysunek 3 podaje niezbędne wymiary i kształt bloku fundamentu przy minimalnych dopuszczalnych naciskach na grunt. Całkowite obciżzenie fundamentu nie przekracza 4000 kG 。

Usytuowanie nożyc 1 fundamentu musi byc takie, aby zapewnic mȯ̇liwośé montażu maszyny przy remontach oraz łatwość obsługi maszyny. Fundament powinien bye wykonany z cementu gatunku 350 z jednego zarobu.

Maszynę należy ustawic na fundamencie po jego całkowitym zaschnięciu /6-12 dni/.

Osadzenie i zalanie śrub fundamentowych wykonak wg rys. 3.

3.3. Odkonserwowanie

Po ustawieniu nożyc na fundamencie należy usunąé z obrobionych powierzchni warstwę przeciwikorozyjnego pokrycia. Szczegónie dokładnie należy przemyé gwinty, prowadnice itp. Przemyte części
nalé̇y dokładnie wytrzeć i pokryć cienką warstwą smaru. W przypadku znacznego zanieczyszczenia, a zwłaszcza skoordowania należy przeprowadzié demontaz poszczególnych elementów.

Szczeǵłowe wytyczne odkonserwowania zawarte są w załączonej do DIR "Instrukcji odkonserwowania".

3.4. Ustawienie /montas/

Przy ustawieniu nożyc na fundamencie należy je wypoziomowac z dokładnoscią 0,2 mm na długosci pomiarowej 1000 mm ./Pomiaru dokonywać na powierzchni stołu/.

Po ustawieniu i wypoziomowaniu należy równomiermie dokręcic nakrętki srub fundamentowych.

Po dokręceniu nakrętek powtórnie sprawdzic dokładnó́c wypoziomowania stoł̌u. Po wypoziomowaniu nożyc nalézy przyocowac usunięte do transportu elementy.

3.5. Przyłaczenie do sieci zasilajacej

Przed przyłączeniem instalacji elektrycznej nożyc do zakładowej sieci zasilającej należy:
a/ sprawdzic, czy dane znamionowe silnika, transformatorów 1 aparatury elektrycznej /napięcie, prąd, częstotliwosc/ zamieszczone na tabliczkach znamionowych są dostosowane do zasilającej sieci elektrycznej,
b/ sprawdzić instalację elektryczną nożjc. Wszystkie uszkodzone w czasie transportu częsci aparatury lub przewody, należy wymienic na nowe.
c/ pomierzyć opornosé izolacji silnika, transformatorów oraz instalacji. W przypadku oporności izolacji miejszej niz 1 megom izolację naleźy przesuszyé,
d/ wykonać odpowiednią instalację ochronną t。zn. zerowac względnie uziemiac. Wybor zależy od miejscowej sleci elektrycznej. Instalacja ochronna jest wykonana przez wytwórcę. Obudowy silnika i innych urządzen elektrycznych są połączone głownym zaciskiem ochronnym na nożyeach znajdujaçm się w dolnej

